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SADDLEPOINT APPROXIMATIONS FOR THE COMBINED PROBABILITY AND
JOINT PROBABILITY DENSITY FUNCTION OF SELECTED ORDER STATISTICS
AND THE SUM OF THE REMAINDER

INTRODUCTION

Detection and location of weak signals in random noise are frequently accomplished by the
ordering of the random variables (RVs) in a measured dataset, followed by an investigation of
the locations and statistics of several of the largest RVs under consideration. Also of interest are
the remaining smaller RVs in the dataset, which can be used to estimate the background noise
level and to form a basis for normalization, thereby realizing a constant false alarm processor.

In this report, the original dataset{x} is composed of N independent RVs with arbitrary
probability density functions (PDFs) {p, (x)}. This dataset is ordered into another dataset of

dependent RVs, each with a different PDF. From this latter set, the M — 1 largest RVs are
selected. The sum of the remaining N + 1 — M RVs is then computed, giving a total of M
dependent RVs. The joint M-th order PDF of these M dependent RVs is one of the quantities of
interest.

For convenience, in this report, the largest RV in set{x,} is denoted by z,,the second-
largest byz,, ..., the M-1 largest by z,, ,, and the sum of the remaining RVs by z,,. Thus, the
first M — 1 RVs satisfy the restrictions that z, >z, >--- > z,,_,, while the last RV satisfies the
restriction that z,, <(N +1-M)z,, ,. Intwo earlier studies, detailed in references 1 and 2, the

combined probability and joint PDF of these M RVs was derived in a form involving a one-
dimensional Bromwich contour integral in the moment-generating function (MGF) domain.
Here, a saddlepoint approximation (SPA) to that contour integral is derived and applied to
several typical sets of RVs. In addition, the first-order correction term to the SPA is developed.
This development is based heavily on the results and notations of references 1 and 2.




SADDLEPOINT APPROXIMATION FOR COMBINED PROBABILITY AND JOINT
PROBABILITY DENSITY FUNCTION

The combined probability and joint PDF of interest is given in reference 2, equation (51),
namely,

M2 M1
I (Moo s My 43205000, 2) = H{U(zm ~Zm1)} H{ij (z,)}

m=] J=1

1 M-1
x—— Cja% exp(~2 2),) P(z3,4, 1) g{c,,,, CVEIS) M ¢)

where U() is the unit-step function, C is the contour in the MGF domain A, P(z,A) is the
product function defined in equation (3) of reference 2, and the c-function is

c,(uA)= ’:fdx exp(Ax) p,(x) forn=1:N. 2)

Evaluation of the top line of equation (1) is trivial; however, the bottom line is more involved.
An alternative version of the bottom line of equation (1) is

1
;5; C_'.d’i exp(-4 z,,) !:X[{C,, (zy 15 A)}, 3)

where the notation neX denotes n = 1:N except n = m,m,,...,m, .

The logarithm of the integrand in equation (3) is defined as

A(2) = log[exp(—l z) [ [He, (2 ,/1)}]

neX

“
=-Az, +z log[c, (=, 1, A)).
neY
The first two derivatives with respect to 4 follow as
. (Zy 1»A)
ANQA)y==-z, +Y om0 ?) )
Y ; Cn(:A/ |q/1)
and
TSI AR LA I bl ACHRN)) 6)

ney [C,,(:M 1 ';‘)]2




The saddlepoint (SP) A, of A(A) (and the integrand of equation (3)) is located where
ANA)=0, A, =4.(2),2p4) 7

which is independent of variables {z,,}, m < M- 1, but which does depend on integers {m;},
j=1:M-1. The standard SPA to equation (3) is given by

exp(—4, z,,) H CACERD) exp[A(4,)]
1] B X (®)

SPAO = = .
[27 A"(A)1" 27 A"(A)]"

The first-order correction to the SPA is

(4] m 2
SPAL = SPAO {le_i_’\_&i} ()

and requires two additional derivatives beyond those given in equations (5) and (6).

EXAMPLE 1: EXPONENTIAL RANDOM VARIABLES
From pages A-1 and A-3 of reference 1, there follows the individual PDF

pn(x)=£—exp(—-bi] forx>0, n=1:N (10)

n n

and the corresponding c-function

1-exp(-u/b, +ul) u
JA) = “ foru > 0; /b)) =—. 11

¢, (u, A) o u>0 ¢, wlfb,) = (11)
Random variable x, has mean b, for n=1:N.

At this point, it is useful to define function

1—-exp(-2)

L(z)=log| ——— forallz #0; L(0)=0. (12)

Then, using equation (11),
u u
log[c, (u. )} = ]og[b—JwL L(b——ul], (13)

and equation (4) yields




n

A=Az, + Z{log( ZZ-' j 4 L( ZZ-’ —z,, ,1}} (14)
neX n

There follows,

AN@A)= -z, -z, , ZL'[AZ" -y, /1],
neX

n

(15)
APQ) = (-z,, ) ZL(’()(E?—ZM_I ,1] fork > 2.
neX

n

The derivatives required of equation (12) use equations (7), (8), (9), and (15), and are given

by
, 1
L(Z)=—'_“+—‘—l, E =exp(z),
1 E
L'(z)=—- ,
¢ 22 (E-1)? 6
” 2 E(E+1) (16)
L (2)=——3‘+ 3
2> (E-D
- 6 E(E’+4E+))
L"(z)y=— -
== (E-1°

The values of the functions above at z = 0 are to be taken as the limits as = approaches zero. All
four of these functions are analytic functions of z on the real axis. However, great care must be
taken in dealing numerically with the removable singularities at = = 0, especially for the higher
derivatives. These issues are discussed in appendix A. The high-order poles atz = 2k,

k =+1,£2,..., do not interfere with the search for the SP A, of equation (7) on the real A-axis.

That is, A'(4) in equation (15) encounters purely real arguments for L'(z) in equation (16) when
A is real.




EXAMPLE 2: SQUARED-GAUSSIAN RANDOM VARIABLES

From pages A-2 and A-3 of reference 1, the individual PDF is

expl — ——
P28,

Qrxb )"

n

p,(x)= forx>0

and the corresponding c-function is

¢, (u,A) =

J1-2b 4

Random variable x, has mean b,, for n=1:N.

At this point, the relevant function is defined as

erf (\/— )

erf( /—21]’; 1/1-21;,,/1J
- foru>0; c,|u,— L

L(z)=1log ( NP ] forall z # 0; L(O)-—log(z/\/_)

which is entire. Then, using equation (18),

1 u u
| A ] =—=logl — |+ L| ———u A |,
e 2 ) 201

n

e

N(A)=-zy — 24 ZL'(;—AZL—ZM_I ﬂj,

neX

and equation (4) yields

A=Az, +— Zlog[

There follows

A(“(i)— (—-M 1) ZL(A [ 2b :M—IA] fork > 2.

neX

gu

JI/Z

b

n

17)

(18)

(19)

(20)

(21

(22)

The derivatives required of equation (19) use equations (7), (8), (9), and (22). and are given

by




1

exp(-z)

L'(z)=—-—+G, G=—""__,
2z Jrzerf(Vz)
L"(z): 2{2 -—(1-!—-(-);—5)(;—62’
“ < (23)
L"'(z)z——l—.,)+(1+l+O'ZSJG+(3+1£)G2 +2G°,
5

z 2 z

P

L"(z)= %—(1 +1;+ 2'35 +—1'8ZSJG——[7 +Z+ 3'75JG2 —(12+ 6)63 -6G".
z z z z

The values of the functions above at z = 0 are to be taken as the limits as z approaches zero. All
four of these functions are entire functions of z. However, great care must be taken in dealing
numerically with the removable singularities at z = 0, especially for the higher derivatives.
These issues are taken up in appendix B.

EXAMPLE 3: GAUSSIAN RANDOM VARIABLES

From pages A-1 and A-3 of reference 1, the individual PDF is

2
1 1{x—a 1 xX—a
= exp| ——| —=*| |=— 2 24

piogty o A5 152 »
and the corresponding c-function is

¢, (u,A) = exp(an A+ %bf /12) cp[” ; b ,1), (25)
where O is the cumulative distribution function of a normalized Gaussian RV. That is,

t t
d(1) = j du ¢(u) = jdu (7)™ exp(-u?/2). (26)

Random variable x, has mean a, and standard deviation b, for n = 1:N (see equation (24)).




At this point, the relevant functions are defined as

u—a

~bA, AA)=-b, @7

L(A)=al+ %bzf +log ®(A(L)), AA)=

which are entire. Then, the first derivative is given by

L'A)y=a+b’A-brl), (28)
where
_PUAA)
r(A) = D)’ r'(A) = br(A) [A(L) + r(A)). (29)

The remaining higher derivatives follow upon reapplication of equation (29) to equation (28),
namely,

L"(A) = b> =b* r(A) [A(A) + r(D)], ‘
L"(A) =B’ r(A) [1- 4> (L) =34 r(A)-2r* (D], (30)
L") = b* r(A) [BAA) - A (A) + (4 =TA (AN r(A) =12 A(A)r* (A) - 67°(A)).
The quantities A(1) and (1) are given in equations (27) and (29), respectively.
The corresponding derivatives of equation (4) are now available as

AA) = =Azy + . [a, A +1b2 A2 +1og®(4,)], 4, =4,(2) _—__Z_f‘i:lb:_‘f"__b” A,
neX

n

AA) = -z B2A-b rl r=r(i)= ¢(An(/1)),
(4) M +;[an +b; 11 or =r(1) S
A"(A)=D b =D brr, [4,+71,], 31)
neX neX

A"(A)=D blr, [1-4] -34,r,-2r}],
neX

A"(AY=D b1, [BA,— A, +(4=T4,)r, —124, 1, —67,].
neX




EXAMPLE 4: CHI-SQUARED RANDOM VARIABLES OF 2  +2 DEGREES OF
FREEDOM

From pages A-2 and A-3 of reference 1, the individual PDF is

x* exp(-x/b,)

P.(x) = BT

forx >0, k integer >0 (32)

and the corresponding c-function is

k
1-exp(-u/b, +ul) Zl,' (u/b, —u i)’
j=0J:

c, (u,A)= for u > 0;
n( ) (1 _ bn l)k”
(33)
k+1
e, (ul/b,)=——
b (k+1)!

Random variable x,, has mean (k+1) b, for n = 1:N.

Define function

k M
1-exp(-z) Z:’/j!

L(z) = log — for == 0; L(0) = -log((k +1)!) (34)
Then, using equation (33),

log[c, (u, A)] = (k +1) log[blj-i- L(bl—u AJ (35)
and equation (4) yields

A(A) =~/ Zyt (k + ]) Z]Og(:—g—]]-}- ZL(:;; 1 Zu 2] (36)

neX n neV n

There follows




n

' | Zp—
ANA)=—zy =2y ZL (%_ZM—I ﬂ),
neX

(37

AP Q)= (=2 )" ZL@)(% -2z z} for p>2.
neX

n

At this point, it is necessary to consider specific cases for integer & in equations (32) through
(34). The case of k= 0 was discussed in equation (10) and the text that followed. The first case
of interest here is k£ = 1, namely, 2k+2 = 4 degrees of freedom (DOF). The function of interest
and its first four derivatives are

L(z) = log(l - eXp(_f) a+ Z)j forz =0, L(0)=—log(2),
z

2 z
L'(z)y=-=+
) z E-1-:z
2 E(-2)-1
L'Z)=—+——""—, 38
) 22 (E-1-2)° (38)

” 4 E*(2+z)+E@-z+z)-2
L"()=- 24 ( )+ E( : )

z (E-1-2)
12 E*(3-2)+4E*(-3+2z-z)+E(15-7z+2z*-2°)-6
ot (E-1-z)* '

, E=exp(z),

b

L""(Z) —

The second case is k = 2, which corresponds to six DOF:

— -z of 22
L(:)=log(1 eXp( ~>_<§+~+ /2)] forz =0, L(0)=—log(6),
3. 2
L'(z)=-=+——, E=exp(z), DEE—(1+2+22/2),
z 2D
" 3 EQ-z)-2-:
L'(z)=—+: ( )2 5
z 2D (39)
" 6 E*(4-8-+2-°)+E(-8+8-+8z" -2z +z%)y+4-627 =227
L"(z)=-—+ ( )+ E( : ) :
ot 4D
ner 18 1 3 2 2 2 3 4
LG = S+ o (4E3(—6+6:-27)+8E>(9-8z2 +4-° — =)

+ E(-72-72-+682" +16z" =14z +2-" - =°)+ 6(4+ 8- - 42> - *
)




The third case is k = 3, which corresponds to 8 DOF:

- — z 22 23
L(z)=log(1 exp(=2) (”_;* /2+ /6)J forz#0, L(0)=-log(24),
4 z
L'(;):-—+g-l—), E = exp(z), DEE-—(]+Z+22/2+23/6),
4 z?
L'z)=—+ E(6-2z)—(6+4z+z?
()= 5+ (E6-22)~( )
L"’(z)=—i3+36zDs (6E2(6-62+27)+ E(-72+ 24z +12:° — 324 4 2%) (40)
+36+362+627 ~122° —62* — 2°)
L"(z)= 2161D4 (36E3(6—18.z~l~9z2 —2°)+24E% (<27 +54z + 2727 —15z* + 62° -z%

+ E (648648216202 ~1188z" +1262* +162z° +3z° - 2127 4328 - 2°)
—3(72-2162" -336z° 1862 ~24z° +20:° + 82" + z*))+ 3?—.

The method of handling the high-order removable singularities of equations (38), (39), and
(40) at = = 0 is discussed in appendix C.
SEARCHING FOR THE SADDLEPOINT

The SP location of the integrand of equation (3) is on the real A axis. F urthermore, the
integrand has a single minimum on the real axis, in its region of analyticity, which is the SP
location 2. This will be demonstrated for arbitrary PDFs {p,(x)} and arbitrary M. It is
presumed that zp; < (N+1-M) z,, so that the joint PDF of interest is nonzero.

Equation (6) is the starting point for the second derivative of the logarithm of the integrand
of equation (3). In general,

c(u,A) = ]dx p(x) exp(4 x),
c'(ud)= ']-dx p(x) exp(4 x) x, 41)

c"(u.A)= ':[dr p(x) exp(Ax) x?.



Then, the numerator of equation (6) can be expressed as

[ ]dx p(x) exp(4 x)] [ ].dx p(x) exp(Ax) x* jl —{ de p(x) exp(Ax) x} . “42)
But, Schwartz’s inequality states that

2
[ ey ew] <] [ rPw]| [arg ) 3)
with equality if and only if f{x) and g(x) are proportional for all x. Upon identification of

f(x)=/p(x) exp(1x/2) and g(x)=p(x) exp(Ax/2) x, (44

it follows that equation (42) is positive for all . Therefore, every numerator of equation (6) is
positive, meaning that A"(1) > 0 for all real A. That is, A(A1) is bowl-like, for real A, with a single
minimum in its original region of definition (convergence of its integral). Therefore, the
integrand of equation (3), namely exp[A(A)], has the same property.

The above conclusion holds for all values of z)s and z).;. However, the actual location of the
minimum of A(4) depends on both of these variables, as can be seen by setting equation (5) to
zero (see equation (7)). Variables {z,,} for m < M — 1 have no effect on SP location A;.
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RELATIVE ACCURACY OF THE ESTIMATE
OF THE SADDLEPOINT APPROXIMATION

The MGF corresponding to PDF p(u) is given by
H(2) = [du exp(du) plu)

and the inversion formula is
1
p) =—— [dZ exp(~2u) p(2),
i2r ;2

where Bromwich contour C is a vertical line from —ico to +ico in the region of definition

(46)

(analyticity) of MGF (1), as obtained from convergence of the integral in equation (45). The

logarithm of the integrand of equation (46) is defined as
A(Au)=—-Au+ y(A), where yx(A)=logu(A).
The SPA to exact PDF p(u) in equation (46) is then

(W)= c’-xp(—/ii u) ,Ul(/};),
[27 " (4,)]

where SP location A, = A(u) satisfies the SP equation, ' (A)=u.
Now, in the neighborhood of the actual SP,
XD = (A)+ 1" (A4)(A-A,) for Anear Ags
X(A)—u=z2"(4)(A-4).
Let a relative error tolerance R, be imposed on the accuracy of the SP location, namely,

Y'(A)—u
u

<R ; u=0.

a

Then. the solution 4 to the SP equation will satisfy

PO gy gy Rl

u l 2"(A)

12

(47)

(48)

(49)

(50)

(1)



Therefore, let solution A, (the axis crossing actually used for the Bromwich contour C) be

R, Ju]
A, = A, +¢&, where ls‘] <—. (52)
x'(4)

Adopt the estimate of the SPA as

exp(—A, u) u(1,)
= < -, 33
P 27 " (21" &)

in analogy with equation (48). Then,

exp(—A, u) = exp(—(A, + &) u) = exp(— A, u) exp(—¢ u) = exp(—4, ‘u) (I-cu),

HR) = Ay + €)= p(A)+ 6 ' (R) = A L ‘e f,((f)}

s

(54)
= p(A) [1+& 7' (A4)]= u(4,) (+gu),

exp(—4, u) p(4,) = exp(—A, u) u(4,) (1-&” ),

which is quadratic in £ This is consistent with A, being a SP of the integrand of equation (46).
Also,

Y (A)=x" (A, +e)= 7" (A)+ e x"(A)s

(55)
PV =T 4" 2 14 £ 24D |
[ (A" =[x (4] 2 700
Combining these results with equations (53) through (55), there follows
e x"(4)
p.(u)= p (u) [] -— —"—S} to order £. (56)
2 y'(4)

Therefore, using equation (52), the relative error in the estimated SPA p.(u) 1s

R, |y [x"(2,)
2 x4

1 =

e XA _
2 ¥"(4,)




Recall that SP location A, = A(x) is a function of u. Therefore, R, can have a complicated
dependence on field point ». The third derivative of X at 4 only needs to be evaluated once, after

the SP location has been determined. Ratio R;/R, is called the error factor.

The modified correction term (CT) to the SPA is

IR SCONE I 4GS N
T oy 2 ey P@=p@+CT] (58)

Upon expanding these functions according to

A)=x" A +e)= 2" (A)+ex"(A) =y, +£ 7,
(39
Zm(’ic) EXstEYX,, Z"”(ﬁ’c)"—: XstEXss

there follows

2
CT;l—g{ug(ﬁ—zéﬂ—i"—1[1+g(2i‘i-3ﬁn. (60)
8 15 Xa A2 24 y, A3 A2

Thus, the perturbation in CT is also linearly proportional to &

An alternative method of determining SP location / is to solve for the minimum of the
integrand of equation (46) on the real A-axis. Equivalently, the minimum of equation (47),
which is the logarithm of the integrand, will suffice. For the latter function, there follows

A(du) = A4, u)+ A' (A, u) (A-2)+ L A"(A,,u) (1 - A,) (61)
for A near ;. But, use of the relations

NAu)=-u+ 7 (1) =0, A"(A,u)=1"(A,), (62)
leads to the result

AAu) = A4, ) +3 y"(A)(A-A4,)°. (63)
Therefore. when a relative error tolerance is imposed on the search for the minimum. namely,

IA(L) ~ A(A, )
| AL

<R,. . (64)

the requirement yields

14



-

S

1/2
{MJ , (65)
x"(4,)

Now, let solution A, (the axis crossing actually used for the Bromwich contour C) be

2R, |AGA,, )"
A=A +¢&, where |e| < — . (66)
2"(A)
Then, the analysis in equations (53) through (56) is unaltered, except that now
"4)| (R "))
g 5
, =8 £ <[—b1A(,1s,u)]7‘” 3J (67)
2 (A 2 2" (A,)

is the relative error of the estimated SPA p(u). A comparison with equation (57) reveals that
relative error R, depends linearly on tolerance R,, whereas relative error R, varies as the square
root of tolerance R;. This degradation in the quality of R, is due to the fact that searching for a
minimum of a function is fundamentally less accurate than searching for a zero of its derivative.
The minimum search is at the bottom of a parabolic bowl, where much larger changes in the
abscissa are required than at the zero crossing of a nearly linear function.

The bounds in equations (57) and (67) depend on high-order derivatives of y(1) = log x(1)

evaluated at the SP location 4;. All of these quantities depend upon the value of the field point u
as well as the particular PDF p(u) under investigation. No general statements about accuracy are
apparent; accordingly, a couple of examples will be investigated quantitatively.

EXAMPLE 1: EXPONENTIAL RANDOM VARIABLE
p(u) =exp(-u) foru >0,
A = 1_1;1_ for Re(1) <1,

(68)

A, u) = —Au—log(1- A),

_
;((")(/1)=u forn>1.

()=
7(2) =~logl=2). 7'(D) == o




All these relations require Re(4) < 1. For u > 0, the SP equation yields

1
'A)y=u, ——=u, A, =1-—,
Z(%) 1- A, u
” 1 2 m 3 nn 4
z(&g=(L_i)2=u,,g(4)=2u, 27(A) = 6u’, (69)
f@&zg
2A) u

Then, the relative error in equation (57) is upper-bounded by

R<RYZ_k. (70)
2u

That is, the relative error in estimated SPA P(u) is less than that in determining SP location A,
itself, by means of the SP equation y'(4;) = u.

By use of equations (68) and (69), there follows

n n-1)! n
anI‘KA)=E%j;%;=(n—DHI,
S 3
s _oXy 2 2w (71)
Aa X, 6u

Thus, the correction term (60) is unaffected; that is,

12°() 5 270’ _160-2' 5 44-2° 3 5_ 1 )
8 (1) 24 (1) 81/0-1) 24 1/0-2)°¢ 4 6 12

for all A. The correction term is independent of A or A, or A.. The SPA is
,Aw)zwmem\é;=10M4ampﬂ)ﬁnu>o. (73)
For the alternative approach. where A(A.v) is minimized. the relevant relations are
A2, a)=-2 u—-log(1-A)=1-u+ log(u) (74

and

16



2"(A)_Qu’) 4 (75)
A @y

giving
R, < 2R, [1-u+log))">. (76)

One bad effect in this approach is the dependence on R’ instead of R; this is due to the

quadratic behavior of A(4,u) near SP location 4,. The second bad effect is the particular
dependence on u, namely,

- {(2 R, [log(w))""* asu—0 +}‘ -

R, u)"? asu — +oo

Although the singularity near z = 0 is not likely to cause problems because of its weak behavior,
the singularity for large u could be problematical, especially if u is the order of 1/R; >> 1. Even
if u = 0.01/R}, the relative error is (2/100)"? = 0.14, which is a noticeable relative error.

EXAMPLE 2: GAMMA RANDOM VARIABLE

k —
p(u)=—zM foru>0, k>-1,
I'(k+1)
1
,u(/i)z(T_—/l;)—(—+T forRe(1) <1,
x(A)=—(k+1) log(1- 1), (78)
AA,u)=-Au—-(k+1)log(l- 1),
k+1 (n—1)!
WD=—-, 77N =tk+1)—— forn=>1.
¥ A =1—7> 27 A =( )(1——/1)" orn
Foru>0,
Y ) =1, k+1=u’ l—ls=k+1, /15=1—k+1,
- A, u u
TR PR UP S S LA VS Y . L (79)
A= AV (k+1)2’z ok +D
x"(4,)

!

= 3 independent of &.
X(A) u




Then, the relative error in equation (57) is upper-bounded according to

R, u
2

R, <

a

2 .
u

independent of £.
At the same time, by the use of equations (78) and (79),

(n-D'u"

= (") /1 =
Xn =2 (4) Gy

giving rise to

L _oH_g 2% 3%
A4 X2 A3 A2

Thus, the correction term is unaffected; that is,

1274 5 ")~ 11
8 ¥"(A)? 24 (1) 12 k+1

for all A. The correction term is independent of A or A, or A..

The SPA is

u* exp(-u) exp(k +1) I'(k+1) _
r(k+1) \/ﬁ(k_i_l)kﬂlz -

p,(u)= p(u) g(k) foru>0.

In particular,

2(0)=1.0844, g(1)=1.0422, g(2)=1.0281, g(10)=1.0076, g(oc)=1,

23 3821

! - >+ ; ask — +oo.
12k 288k 51840k

glk)~1+

For the alternative approach, where A(A.u) is minimized.,

k+1

u

A a)=-A u—~(k+N)log(l-A)=-u+k+1-(k+1) log(

and

2"A) 4
y"(A) k+1

18

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)



which yields

&<@&

u u
1-—+ log(—
k+1 k+1
In particular,

1/2
R, ~(2R,, LJ asu — +oo.
k+1

JI/Z

(88)

(89)

That is, larger k values of the Gamma PDF ameliorate the accuracy problems present for large

values of u. The R,’* dependence is still present, however.

It has been observed numerically that the SPA is very accurate for evaluating the joint PDF
of interest here; in fact, the correction term is virtually 1 in most cases. The reason for this is that
the integral in equation (3) pertains to the last RV, which is the sum r of the remainder. For a
large number N of RVs, and for M not too large, the Central Limit Theorem says that » (the sum

of N+ 1 — M RVs) tends to a Gaussian RV. But the SPA itself is exact for Gaussian RVs.

Therefore, since r is nearly Gaussian, it is expected that the SPA should be quite accurate; this is

indeed the case.
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PROGRAMS FOR THE SADDLEPOINT APPROXIMATIONS

Six MATLAB programs for the SPAs in equations (8) and (9) are listed below. They are

keyed to the four examples listed in the Saddlepoint Approximation section and to tables 1
through 6.

Example 1: spa_M_log_1 (table 1)
Example 2: spa_M_log_2 (table 2)
Example 3: spa_M_log_3 (table 3)

Example 4 (chi-squared, four DOF): spa_M log_4 cs4 (table 4)

Example 4 (chi-squared, six DOF):  spa_ M_log 4 cs6 (table 5) |

Example 4 (chi-squared, eight DOF): spa_M log_4 cs8 (table 6).

The log reference in the file names indicates that the logarithm of the SPA is actually calculated

rather than the SPA itself. This avoids underflow and overflow when extreme tail probabilities
are of interest. The abbreviation csp stands for chi-squared of p DOF, p integer.

2

The logarithm of the standard SPA is given by variable spa0_log, while the corresponding
first-order correction term is given by spal log. The error_factor was defined just below
equation (57). Fourth-order derivatives of the various L functions are required to evaluate these
expressions. These quantities are thoroughly considered in appendixes A, B, and C.
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Table 1. Program for Example 1

function spa M log 1 % TR 11,469, general M
global zM zMl bd % Exponential RVs, CS 2 DOF
N=1024; % Number of RVs

n=[1:N]";

b=exp (-.3* (n-.7*N) ."2)+.1; % N means

m=[10;11;12;13]; z=[1.3;.8;.6;.4;100];

M=length(z);

zd=diff(z);

if (any(zd(1:M-2)>0)) pdf=0, keyboard, end
zM=z (M) ;

zMl=z (M-1);

if (zM>(N+1-M) *zM1) pdf=0, keyboard, end

nd=setdiff (n,m):; $n~=m(l),...,m{M=1)
bd=b (nd) ;

options=optimset ('tolx',le-15);
[Ls, fv,ex,oul=fzero(@Laml, 0,options);
saddlepoint=Ls

ap=z(1:M-1)./b(m); % Leading
pm_log=-sum(ap)-sum(log(b(m))); % PDFs

as=zMl./bd~zM1*Ls;
Lam=-zM*Ls+sum(log (zM1l. /bd) )+sum(Lcs2z (as));
Lam2=zM1"2*sum(Lcs2z2 (as)); ’
Lam3=~zM1”"3*sum(Lcs2z3 (as));
Lamd4=zM1*4*sum(Lcs2z4 (as)) ;

spa0_ log=pm log+Lam-.5*log(2*pi*Lam2)
ct=.125*Lam4/Lam2"2~5/24*Lam3"2/Lam2"3;

spal log=spal_log+log(l+ct)

error factor=.5*zM*abs (Lam3) /Lam2"2
keyboard

function w = Laml (L) % Lambda’' (L)
global zM zM1l bd
w=—zM-zMl*sum(Lcs2z1 (zM1l. /bd-zM1*L)) ;
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Table 2. Program for Example 2

function spa_M log 2 % TR 11,469, general M
global zM zM1 bd % Gaussian-squared RVs
N=128; % Number of RVs

n=[1:N]"';

b=exp(-.3*(n-.7*N).*2)+.1; % N scale factors, page A-3

m=[10;11;12;13); 2z=[1.3;.8;.6;.4;10];

M=length(z);

zd=diff (z);

if (any(zd(1:M-2)>0)) pdf=0, keyboard, end
zM=z (M) ;

zMl=z (M-1) ;

if (zM> (N+1-M) *zM1) pdf=0, keyboard, end

nd=setdiff (n,m); gn~=m(l),...,m(M-1)
bd=b (nd) ;

options=optimset ('tolx',le-10);
[Ls,fv,ex,ou)l=fzero(@Laml, 0, options) ;
saddlepoint=Ls

ap=.5*z (1:M-1)./b(m); % Leading PDFs
pm_log=-sum(ap)-.5*sum(log(2*pi*z (1:M-1).*b(m)));

as=.5*zM1, /bd-zMl1*Ls;
Lam=-zM*Ls+.5*sum(log(.5*zM1./bd))+sum(Lerfz(as));
Lam2=zM1*2*sum(Lerfz2 (as));
Lam3=-zM143*sum(Lerfz3(as));
Lam4=zM1~4*sum(Lerfz4 (as));
spal_log=pm_log+Lam-.5*log (2*pi*Lam2)
ct=.125*Lam4/Lam2*2-5/24*Lam3*2/Lam2"3;
spal_log=spal_log+log(l+ct)
error_factor=.5*zM*abs (Lam3) /Lam2"2

keyboard

function w = Laml (L) % Lambda' (L)
global zM zM1 bd
w=-2zM=-zM]l *sum(Lerfzl (.5*%zM1. /bd-zM1*L)) ;
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Table 3. Program for Example 3

TR 11,469, general M
Gaussian RVs

function spa M log 3
global zM zMl ad bd

o0 oP

N=128; % Number of RVs

n=[1:N]";

a=1+n/N; % N shift factors, page B-3
b=exp (-.3* (n-.7*N) .*2)+.1; % N scale factors, page A-3

m=[117;126;89]; 2z=[2.5;2.1;2.05;185];

M=length(z);

zd=diff (z);

if(any(zd(1:M-2)>0)) pdf=0, keyboard, end
zM=z (M) ;

zMl=z (M-1);

if (zM> (N+1-M)*zM1l) pdf=0, keyboard, end

nd=setdiff (n,m); g n~=m(l),...,m(M-1)
ad=a(nd); bd=b(nd):

options=optimset ('tolx',le-10);
[Ls, fv,ex,ou]l=fzero(@Laml, 0,options);
saddlepoint=Ls

ap={(z(l:M-1)-a(m))./b(m); % Leading PDFs
pm_log=-.5*sum(ap.”"2)-sum(log(sqgrt (2*pi) *b(m)));

As=(zMl-ad) ./bd-bd*Ls; As2=As."2;
phis=.5*erfcore(-As*sqrt(.5),1);
rs=sqrt(.5/pi) *exp(~-.5*As2)./phis;
bd2=bd.”2; bd2r=bd2.*rs;
Lam=-zM*Ls+sum(Ls*ad+.5*Ls"2*bd2+1og (phis));
Lam2=sum (bd2-bd2r.* (As+rs));

Lam3=sum (bd. *bd2r.* (1-As2-rs.* (3*As+2*rs) ) ) ;
Lam4=sum(bd2. *bd2r.* (As.* (3-As2)+rs.* (4-7*As2-rs.* (12*As+6*rs))) ) ;
spal_log=pm_ log+Lam-.5*log(2*pi*Lam2)
ct=.125*Lam4/Lam2"2~5/24*Lam3"2/Lam2"3;
spal_log=spal_log+log(l+ct)
error_factor=.5*zM*abs (Lam3) /Lam2"2

keyboard

function w = Laml (L) % Lambda' (L)
global zM zM1l ad bd

A= (zMl-ad) ./bd-bd*L;
phiA=.5*erfcore (-A*sgrt(.5),1);
r=sqrt(.5/pi)*exp(~-.5*A."2)./phia;
w=-zM+sum(ad+bd."2*L-bd. *r) ;
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Table 4. Program for Example 4, Four DOF

function spa_M log 4 _cs4 % TR 11,469, general M
global zM zM1l bd % Chi-squared RVs, 4 DOF
N=1024; % Number of RVs
n=[1:N]";

b=exp (-.3* (n-.7*N) .~2)+.1; % N means

m=[10;11;12;13]; 2=[1.3;.8;.6;.4:170];

M=length(z);

2d=diff(z);

if(any(zd(1:M-2)>0)) pdf=0, keyboard, end
zM=z (M) ;

zMl=z (M-1);

if (zM>(N+1-M) *zM1) pdf=0, keyboard, end

nd=setdiff (n,m); $n~=m(l),...,m(M-1)
bd=b (nd) ;

options=optimset ('tolx',le-15);
[Ls,fv,ex,ou]=fzero(@Lam1,0,options);
saddlepoint=Ls

ap=z(1:M-1)./b(m); % Leading PDFs
melog=-sum(ap)—sum(log(b(m)))+sum(log(ap));

as=zM1./bd-zM1*Ls;
Lam=-2zM*Ls+2*sum(log (zMl. /bd) ) +sum(Lcsdz (as) ) ;
Lam2=zM1"2*sum(Lcs4z2 (as)) ;
Lam3=-zM1"3*sum(Lcsd4z3 (as));
Lam4=2zM1"4*sum(Lcs4z4 (as));
spal_log=pm_log+Lam-.5*log (2*pi*Lam?2)
ct=.125*Lam4/Lam2"2-5/24*Lam3"2/Lam2"3;
spal_log=spa0_log+log(l+ct)
error_factor=.5*zM*abs (Lam3) /Lam2"2

keyboard

function w = Laml (L) % Lambda' (L)
global zM zM1 bd
=~zM-zMl*sum(Lcs4z1 (zM1. /bd-zM1*L));
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Table 5. Program for Example 4, Six DOF

TR 11,469, general M

function spa_M log 4 _csé6
Chi-squared RVs, 6 DOF

global zM zM1l bd

%
%

N=1024; % Number of RVs
n=[1:N]"';
b=exp(-.3*(n-.7*N) ."2)+.1; % N means

m=[10;11;12;13]; 2z=[1.3;.8;.6;.4;230];

M=length(z):

zd=diff (z);

if (any(zd(1:M-2)>0)) pdf=0, keyboard, end
zM=z (M) ;

zMl=z (M-1) ;

if (zM> (N+1-M)*zM1l) pdf=0, keyboard, end

nd=setdiff(n,m); ¢ n~=m(l),...,m(M-1)
bd=b (nd) ;

options=optimset ('tolx',le-15);
[Ls, fv,ex,oul]l=fzero (@Laml, 0,options);
saddlepoint=Ls

ap=z (1l:M-1)./b(m); % Leading PDFs
pm_log=-sum({ap)-sum(log{b(m)))+2*sum(log(ap))~(M-1) *log(2);

as=zMl. /bd-zM1*Ls;
Lam=-zM*Ls+3*sum(log(zMl. /bd) ) +sum(Lcséz (as));
Lam2=zM1"2*sum(Lcs6z2(as)):
Lam3=-zM1"3*sum(Lcs6éz3(as));
Lam4=zM1"*4*sum(Lcs6z4 (as));
spa0_log=pm_log+Lam-.5*log (2*pi*Lam2)
ct=.125*Lam4/Lam2"2~5/24*Lam372/Lam2"3;
spal_log=spal_log+log(l+ct)

error factor=.5*zM*abs (Lam3) /Lam2"2

keyboard

function w = Laml (L) $ Lambda' (L)
global zM zM1 bd
w=-zM-zMl*sum(Lcs6z1 (zM1./bd-zM1*L)) ;
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Table 6. Program for Example 4, Eight DOF

function spa_M log 4 cs8 $ TR 11,469, general M
global zM zM1 bd % Chi-squared RVs, 8 DOF
N=1024; % Number of RVs
n=[{1:N]"';

b=exp (~-.3*(n~.7*N) .*2)+.1; % N means

m=[10;11;12;13); z=[1.3;.8;.6;.4;270];

M=length(z);
zd=diff (z);
if (any(zd(1:M-2)>0)) pdf=0, keyboard, end

zM=z (M) ;

zZMl=z (M-1);

if (zM> (N+1-M) *zM1) pdf=0, keyboard, end
nd=setdiff (n,m); $ n~=m(l),...,m(M-1)
bd=b (nd) ;

options=optimset ('tolx',le-15);
[Ls,fv,ex,ou]=fzero(@Lam1,0,options);
saddlepoint=Ls

ap=z(1:M-1)./b(m); % Leading PDFs
pm_log=—sum(ap)—sum(log(b(m)))+3*sum(log(ap))-(M—l)*log(G);

as=zMl. /bd-zM1*Ls;
Lam=—zM*Ls+4*sum(log(le./bd))+sum(LcsBz(as));
Lam2=zM1"2*sum(Lcs8z2 (as)) ;
Lam3=-zM1~3*sum(Lcs8z3 (as) ) ;
Lam4=zM1"4*sum(Lcs8z4 (as)) ;
spal_log=pm_log+Lam-.5*log (2*pi*Lam2)
ct=.125*Lamd4/Lam2"2~-5/24*Lam32/Lam2~3;
spal_log=spa0_log+log(l+ct)
error_factor=.5*zM*abs (Lam3) /Lam2/2

keyboard

function w = Laml (L) % Lambda' (L)
global zM zM1 bd
w=-2zM-2zMl *sum(Lcs8z1 (zM1. /bd-zM1*L)) ;
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SUMMARY

Equations have been derived for the standard and first-order corrected SPA to the combined
probability and joint PDF of the M — 1 largest RVs of a set of N independent RVs and the sum of
the remainder. These results have been applied to six different examples of RVs, including
Exponential, Gaussian-Squared, Gaussian, and Chi-Squared RVs of various DOF. Detailed
investigations of the necessary auxiliary functions and their singularities have been conducted,
and highly accurate programs have been generated for their efficient calculation. Most of the
results have 13 to 14 decimal digits of accuracy.

It has been observed numerically that the SPA is very accurate for evaluating the joint PDF
of interest here; in fact, the first-order correction term is virtually 1 in most cases. The reason for
this is that the integral in equation (3) pertains to the last RV, which is the sum r of the
remainder. For a large number N of RVs, and for M not too large, the Central Limit Theorem
says that » (the sum of N + 1 — M RVs) tends to a Gaussian RV. But the SPA itself is exact for
Gaussian RVs. Therefore, since 7 is nearly Gaussian, it is expected that the SPA should be quite
accurate. This is indeed the case.
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APPENDIX A
ALTERNATIVE POWER SERIES FOR log[(1 — exp(~2))/z]

The function L(z) of interest and its first four derivatives were given in equations (12) and

(16), namely,
(1—exp(—z))
L(z)=log ——————=| forz=0, L(0)=0, (A-1)
z
and
! —.__1. _._I__ =
L@)=-—+7— E=exp(z),
oyt __E
e (A-2)
o) -2 BED
z2 (E-1
L""(z)=£4—E(E2+4E4+l),
z (E-1)

where z is complex. The values of the functions in equation (A-2), at z = 0, are to be taken as the
limits as z approaches zero. All of these equations have numerical problems as z approaches
zero, and the problem becomes most severe for the highest-order derivative. The required
differences of large numbers, of approximately equal size, cause losses of significance in the
final results near z = 0, if equations (A-1) and (A-2) are used in their current forms.

An alternative approach is to replace these equations with their power series expansions
about z = 0. Questions then arise as to how many terms should be used in each power series, and
at what values of |z| the switches should be made, from the given functional forms above, to the
appropriate power series. The answers to these questions hinge on the desired accuracy, both
absolute and relative, and the amount of computer effort to be expended on the power series
equivalents.

The approach to this problem will be illustrated with respect to function L(z) in equation
(A-1). First, “exact” values of L(z) were obtained directly from equation (A-1) (at any nonzero =
of interest) by means of variable precision arithmetic using 50 digits of significance. Then, a
(nonzero) value of radius » = |z| was specified and L(z) was evaluated via equation (A-1) at 128
equally spaced points on a circle of radius 7 in the complex z-plane, using standard double
precision (64 bits). The maximum absolute and relative errors of these latter calculations
(relative to the “exact”™ 50-digit results) were then evaluated and plotted as one point on each of
the curves labeled “L™ in figure A-1. The radius r was then varied from 0.05 to 1.2 in increments
of 0.05 and the complete “L™ curves, both absolute and relative in figure A-1, were swept out.
These error curves basically decrease with radius » because the distance from the problematical
point = = 0 is increasing.




Next, the power series expansion of L(z) to 8 terms, namely up to z°, was determined. For
radius , this power series in z was then evaluated in standard double precision at the same 128
points as above, and the maximum absolute and relative errors (relative to “exact”) were
computed and plotted in figure A-1 with the label “z*”. As radius r was increased, the errors
basically increased because the power series is most accurate near the origin of the complex z-
plane. This procedure was repeated for the power series expansions using 10, 12, 14, and 16
terms, and the corresponding absolute and relative errors are indicated in figure A-1.

From the plots in figure A-1, it is now possible to determine where to make the switch from
the functional form in equation (A-1) to one of the various power series indicated. For present
purposes with function L(z) in equation (A-1), it was decided to make the switch at radius r =
0.56 and to use the power series with terms up to z'* for |z| < 0.56. Figure A-1 indicates that the
relative error is then better than 10™"° for all complex z. A larger switch-radius would require a
larger power series, but the improvement in relative error would be minimal.

Similar results for the four derivative functions in equation (A-2) are presented in figures
A-2 through A-5, respectively. The quantity L‘”’(z) is denoted by L, inthe figures. It was

decided to use 13 terms for L(z) below radius 0.63, 16 terms for L"(z) below radius 0.9, 23
terms for L"(z) below radius 1.42, and 24 terms for L""(z) below radius 1.45. The errors are

getting progressively poorer for the higher-order derivative functions. However, the worst
relative error for L""(z) still maintains about 12.7 decimals, according to figure A-5. This
bound is applicable for all complex z.

The slow decays of the L-curves with radius r discourage the use of higher-order series
expansions. However, if larger errors can be tolerated, figures A-1 through A-5 indicate the
trade-offs available to a user. For example, if 20 terms are acceptable for the power series for
L""(z), the relative error would be increased to about 12.4 decimals and the switch radius would

be changed to 1.2.

All of these functions have poles at z=i2m forn=+1,+2, .... This non-analytic behavior
means that the power series expansions about the origin = = 0 cannot possibly converge for
[z! > 27, because that is the location of the poles closest to the origin. Furthermore, one cannot

get too close to I:] =27 because the convergence would then be so slow as to be futile. Also

observe that the pole of L""(z) at z = +i27 is of fourth order; that singularity makes for very
slow convergence if |z| is allowed to get anywhere near 2.

Programs for all the functions in equations (A-1) and (A-2) are presented in tables A-1
through A-5. These MATLAB programs are vectorized for any size matrix = and can handle all
complex values of -.
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Table A-1. Program for L(z) in Equation (A-1)

function w = Lcs2z(z) % log([l-exp(~-z)]/z)

s=size(z); z=z(:); % for all complex z

w=zeros (size(z)); % and all size(z).

% Principal value log is desired. The branch lines are at:

% z

= lambertw(n,exp(1l/p)/p)-1/p for real p > 0; n=+-1, +-2,...

% Branch points of Log(...) are at z = i 2 pPi n, n=+-1, +-2,...

kl=find(real (z)<=-37);
if (~isempty (k1))

end

y=z (k1) ;

t=-y-log(-y); % Not necessarily the principal value for w.
b=imag(t);

b=mod (b, 2*pi) ;

k=find (b>pi);

b(k)=b(k)~2*pi;

w(kl)=real(t)+b*i; & Principal value for w.

k2=find (abs (z)<=.56); % Radius 0.56
if (~isempty(k2))

end

y=z(k2); x=y.*y;

al=-1/2; a2=1/24; a4=-1/2880; a6=1/181440; a8=-1/9676800;
al0=2.087675698786810e~9; al2=-4.403491782239578e-11;
w(k2)=a1*y+x.*(a2+x.*(a4+x.*(a6+x.*(a8+x.*(a10+x.*a12)))));

k3=setdiff([1:length(z)]',union(kl,k2)):
if (~isempty (k3))

end

y=z(k3):;
w(k3)=log((l-exp(-y))./y):

w=reshape (w, s) ;

A-8




Table A-2. Program for L'(z) in Equation (A-2)

function w = Les2z1l(z) % =-1/z+1/(exp(z)-1)
s=size(z); z=z(:); % for all complex z

w=zeros (size(z)): % and all size(z).

% Function has poles at i 2 pi n for n=+-1, +-2,...

kl=find (real (z)>=41);
if (~isempty (k1))
w(kl)=-1./z(k1l):

end

k2=find (abs(z)<=.63); % Radius 0.63

if (~isempty(k2))
y=z(k2); =x=y.*y;
al0=-1/2; al=1/12; a3=-1/720; a5=1/30240; a7=-1/1209600;
a9=1/47900160; all=-5.284190138687493e-10; '
al3=1.338253653068468e-11;
w({k2)=a0+y.* (al+x.* (a3+x.* (ab+x.* (a7+x.*...
(a9+x.*(all+x.*al3))))) )

end

k3=setdiff ([l:length(z)]"',union (kl,k2)):;
if (~isempty (k3)) .
y=2z (k3):
w(k3)=-1./y+1./(exp(y)-1);
end

w=reshape (w, s) ;
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Table A-3. Program for L"(z) in Equation (4-2)

function w = Lcs222(z) % 1/2z72-E/(E-1)72; E=exp (z)
s=size(z); z=z(:); $ for all complex z
w=zeros (size(z)); % and all size(z).

% Function has poles at i 2 pi n for n=+-1, +-2,...

kl=find(real (z)>=45);
if (~isempty (k1))

w(kl)=1./z(k1l).%2;
end

k2=find(abs(z)<=.9); % Radius 0.9

if (~isempty(k2))
y=2z(k2); x=y.*y;
a0=1/12; a2=-1/240; a4=1/6048; a6=-1/172800; a8=1/5322240;
al0=-691/118879488000; al2=1/5748019200;
al4=-3617/711374856192000; al6=1.459630549567234e-13;
w(k2)=a0+x.*(a2+x.*(a4+x.*(a6+x.*(a8+x.*...
(al0+x.* (al2+x.* (ald+x.*al6)))))));

end

k3=setdiff([1:length(z)]',union(kl,k2));
if (~isempty(k3))
y=z(k3); E=exp(y):
w(k3)=1./y.*2-E./(E~1)."2;
end

w=reshape (w, s) ;




e

Table A-4. Program for L'"(z) in Equation (A-2)

-2/2"3+E(E+1)/ (E~1)*3; E=exp(z)
for all complex z

and all size(z).

2 pi n for n=+-1, +-2,...

function w = Lcs2z3(z)
s=size(z); z=z(:);
w=zeros (size(z)):;

% Function has poles at

H- do oo oo

kl=find (real (z)>=49);
if(~isempty (k1))

w(kl)=-2./z (k1) ."3;
end

oo

k2=find(abs (z)<=1.42); Radius 1.42
if (~isempty(k2))
y=z (k2); x=y.*y;
al=-1/120; a3=1/1512; ab5=-1/28800; a7=1/665280;

a9=-691/11887948800; all=1/479001600; al3=-7.118328622277424e-11;

al5=2.335408879307574e~12; al7=-7.438050949068572e~-14;

al9=2.3137811879112%6e~-15; a2l1=-7.060959131021136e-17;

a23=2.120824223777681e-18;

w(k2)=y.*(al+x.* (a3+x.* (ab+x.* (a7+x.* (a9%+x.* (all...

+x.*¥(al3+x.*(alb+x.*(al7+x.*(al%+x.*(a21+x.*a23))))))))y))):
end

k3=setdiff ([l:1length(z)]’',union(kl,k2));
if (~isempty (k3))
y=z (k3); E=exp(y):
w(k3)=-2./y."3+4E.*(E+1) ./ (E-1)."3;
end

w=reshape (w, s) ;




Table A-5. Program for L""(z) in Equation (A-2)

function w = Lecs2z4(z) % 6/z"4-E(E*2+4E+1) / (E-1) ~4; E=exp (z)
s=size(z); z=z(:); % for all complex z
w=zeros(size(z)); % and all size(z).

% Function has poles at i 2 pi n for n = +-1, +-2,...

kl=find(real (z)>=52);
if (~isempty (k1))

w(kl)=6./2z(kl)."4;
end

k2=find(abs(z)<=1.45); % Radius 1.45

if (~isempty(k2))
y=z(k2); x=y.*y;
a0=-1/120; a2=1/504; a4=-1/5760; a6=1/95040;
a8=-691/1320883200; al0=1/43545600; al2=-9.253827208960651e-10;
al4=3.503113318961361e-11; al6=-1.264468661341657e-12;
al8=4.396184257031463e~14; a20=-1,482801417514439e-15;
a22=4.877895714688665e-17; a24=-1.57134230844508%e-18;
w(k2)=a0+x.*(a2+x.*(a4+x.*(a6+x.*(a8+x.*(a10+x.*(a12...

+x.*(a14+x.*(a16+x.*(a18+x.*(a20+x.*(a22+x.*a24)))))))))));
end

k3=setdiff([l:length(z)]',union(kl,k2)):
if (~isempty (k3))
y=z (k3); E=exp(y):
w(k3})=6./y."4-E.*(E.~"2+4*E+1) ./ (E~-1)."4;
end

w=reshape (w, s) ;




APPENDIX B
ALTERNATIVE POWER SERIES FOR log[erf(vz )/z]

The function L(z) of interest and its first four derivatives were given in equations (19) and
(23), namely,

L(z) = 1og(“f(‘/;)j forz#0, L(0)=1log(2/\7), (B-1)
Jz
and
s 1 exp(-z)

L'(z)=—+G, G=————,
2z Jrzerf(Jz)

L(z)= 212 —[1+EJG~62,
z y4
1 1 075 1.5 ®2)

L"'(z):———3—+(l+—+'—2]6+(3+—‘-)G2 +2G>,
Z < 4 4

L""(z)=—37—(l+£+ 2'35 + 1'8375)6-—(7+Z+ 3'25)G2 —(12+§)G3 -6G*,

zZ z z z V4 z z

where z is complex. The values of the functions in equation (B-2) at z = 0 are to be taken as the
limits as z approaches zero. All of these equations have numerical problems as z approaches
zero, and the problem becomes most severe for the highest-order derivative. The required
differences of large numbers, of approximately equal size, causes loss of significance in the final
results near z = 0, if equations (B-1) and (B-2) are used in their current forms.

The method of circumventing this numerical difficulty is identical to that presented in
appendix A, namely, replace these functions by their power series representations for z near 0.
The results for the absolute and relative errors for the five functions above are presented in
figures B-1 through B-5, respectively. For the L-function error in figure B-1, it was decided to
use equation (B-1), as is, for all z. On the other hand, it was decided to use 6 terms in the power
series for L'(z) below radius 0.06, 16 terms for L"(z) below radius 0.71, 18 terms for L"(z)
below radius 0.87, and 22 terms for L""(z) below radius 1.08. Thus, for example, from figure

B-5, the relative error for L""(z) is 12.1 decimals for all complex =.

There are bumps in some of the relative error curves. These are due to the exact function
having a zero for a particular value of . For example, L(-) has a zero at == 0.3812. L"(z) has a

zero at 2 =-1.4585,and L""(z) has a zero at - = 0.9087. When the relative error is computed at

a point near these zeros, these near-zero calculations of the denominator manifest themselves as
bumps in the relative error curve, and should be ignored.

B-1




MATLAB programs for all five functions in equations (B-1) and (B-2) are available from
the author upon request.
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APPENDIX C
ALTERNATIVE POWER SERIES FOR CHI-SQUARED RANDOM VARIABLES

For k=1, that is, for a chi-squared RV with 2k + 2 = 4 DOF, the function L(z) and its first
four derivatives were given in equation (38), namely,

L(z) = log(l - e"p('f )+ Z)j forz =0, L(0)=—log(2),
Z .

2 z

L'(z)=-= , E= )
(2) - T 12 exp(z)
2 E(l-2)-1
L'(z2)= —+— "2, C-1
O=F* G- ©D
” 4 E*(2+2)+E@-z+2%)-2
L"@)=——+ ( )+ E( : ) ,
z (E-1-2)
3 2, 2 _ 2 3y
L,,,,(Z)=1_24_+E B-2)+4E*(-3+2z~z )+f?(15 Tz+2% -2°) 6’
z (E-1-2)

where z is complex. The values of the functions in equation (C-1), at z= 0, are to be taken as the
limits as z approaches zero. All of these equations have numerical problems as z approaches
zero, and the problem becomes most severe for the highest-order derivative. The required
differences of large numbers, of approximately equal size, causes losses of significance in the
final results near z = 0, if the results in equation (C-1) are used in their current forms.

The method of circumventing this numerical difficulty is identical to that presented in
appendix A, namely, replace these functions by their power series representations for z near 0.
The results for the absolute and relative errors, for the five functions above, are presented in
figures C-1 through C-5, respectively. It was decided to use 13 terms in the power series for L(z)
below radius 0.7, 14 terms for L'(z) below radius 0.9, 15 terms for L"(z) below radius 1.03, 18
terms for L"(z) below radius 1.27, and 23 terms for L""(z) below radius 1.84. Thus, for

example, from figure C-5, the maximum relative error for L""(z) is 12 decimals for all complex

-~

e

The relative error curve for L(z) has a bump in the neighborhood of radius 1; this is due to a
zero of L(z) atz=-1. Also, L"(z) has a zero at z=2.1631, while L""(z) has zeros at

z=-1.1756 and 5.4429; however, the only one of these latter zeros that affects the relative error
curve is the bump in the neighborhood of radius 1.2 in the plot of L""(Z).
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For k=2, that is, for a chi-squared RV with 2k + 2 = 6 DOF, the function L(z) and its first
four derivatives were given in equation (39), namely

L(z) = log[l —exp(-2) g +z+2/2) ] forz =0, L(0)=—log(6),

2

L'(z)=-§+—7i—, E = exp(2), DEE—(1+z+zz/2),
z 2D

p 3 EQ2-2)-2-z

L'(2)=— ,
(2) Stz o o

o 6  E’(4-8z+22°)+E(-8+82+82>-22°+2*)+4-622 - 2.

L (Z)=——3+ S ,
z 4D

e 18 1 (. o L

L") = +ers (4E>(-6+62—22)+ 8E? (9-82? +42° — %)
z

+ E(=72-72z+682z% +162° —14z* +22° — z5) + 6(4 + 8z — 42° —z‘)).

The numerical difficulties at z = 0 are handled as discussed above; the results for the absolute
and relative errors for these five functions are presented in figures C-6 through C-10,
respectively. It was decided to use 13 terms in the power series for L(z) below radius 0.91, 13
terms for L'(z) below radius 1.06, 15 terms for L"(z) below radius 1.33, 23 terms for L"(z)
below radius 2.15, and 25 terms for L""(z) below radius 2.38. Thus, for example, from figure
C-10, the maximum relative error for L"'(z) is 11.5 decimals for all complex z.

The relative error curve for L(z) has a bump in the neighborhood of radius 1; this is due to a
zero of L(z) at z = -0.9289. Also, L"(z) has a zero at z = 3.9977, while L""(z) has a zero at

z=17.6874; however, the plots did not have to be carried out that far to make the choices for the
switch radius.




For k = 3, that is, for a chi-squared RV with 2k + 2 = 8 DOF, the function L(z) and its first
four derivatives were given in equation (40), namely

_ _ 2 3 :
L(z)=log(1 exp(=z) A +2+ / 2“/6)] forz =0, L(0)=—log(24),
zZ
[ 4 ZS 2 3
L'(z)=-—+2—, E=exp(z), D=E-(+z+z*/2+2%/6),
z 6D
L"(z)~-4—+—Z—2—(E(6—2z)—(6+4z+zz))
22 12D? ’
L"(z) = - %+ 3621)3 (6E2 (6-6z+2z2)+E(-72+24z* +122° -3z* + 2°) (C-3)
4
+36+362+62° —122° —62° - 2°),
1

L"(z)= (36E° (6-18z+92% —z°) + 24E* (27 + 54z +272% ~152* +62° — z°)

216 D*
+ E (648 — 6482 —16202% —1188z° +126z* +1622° +3z° -21z7 +32° - 2°)

~3(72-216z% -3362> —186z* —24z° +20z° + 82’ +z8))+3fi.
z

The numerical difficulties at z = 0 are handled as discussed above; the results for the absolute
and relative errors for these five functions are presented in figures C-11 through C-15,
respectively. It was decided to use 15 terms in the power series for L(z) below radius 1.45, 16
terms for L'(z) below radius 1.66, 17 terms for L"(z) below radius 1.88, 22 terms for L"(z)

below radius 2.58, and 23 terms for L""(z) below radius 2.90. Thus, for example, from figure
C-15, the maximum relative error for L""(z) is 10.9 decimals for all complex z.

MATLAB programs for all the functions in equations (C-1) through (C-3) are available from
the author upon request.
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Figure C-1. Errors for L(z) in Equation (C-1)
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